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Abstract

We present a new scheme for loose coupling in fluid–structure-interaction problems as they typically appear in the

context of aircraft design. This coupling scheme is based upon generalized multivariate scattered data interpolation and

is tailored for small structural models, which bear in addition to deformations also rotational information. In contrast

to classical coupling schemes, we also employ this rotational information to build a more accurate reconstruction.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In computational aeroelasticity, one major goal is to describe the influence of structural deformations on the

aerodynamic load distribution and vice versa. Deformations of an aircraft during flight may have severe consequences

on the aerodynamic performance, maneuverability, and handling qualities (Försching, 1974). For this reason, the

elasticity of an aircraft has to be taken into account during the early stages of design.

A main task concerning the treatment of coupled aeroelastic systems is the simulation of fluid–structure interaction

(FSI). Research on FSI in the field of numerical aeroelastic simulation has recently strongly increased [see for example

Beckert and Wendland (2001), Edward (1993), Ahrem et al. (2006), Farhat et al. (1998), Farhat and Lesoinne (1998),

Försching (1994)]. An FSI method derives an adequate numerical distribution of aerodynamic loads at the structural

nodes of the FE-model—using the aerodynamic pressures given in finite volumes, volume elements, or panels of the

discretized flow-field or surface—as well as an adequate deformation of the aerodynamic shape, using the displacements

and rotations given at the nodes of the FE-model.

In the literature, there exist two main formulations to describe the aeroelastic problem: the monolithic and the

coupled field formulation (Farhat and Lesoinne, 1998; Kutler, 1993). In the first case, and especially for simple and

small-scale structural problems, the fluid and the structural state equations are combined and treated as a single
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monolithic system of equations. However, for complex aeroelastic problems, the fluid and the structural domains

show different mathematical and numerical properties and require distinct numerical solvers. For the monolithic

approach, a rewriting of the structural and fluid computer programs is necessary and the extension to other disciplines

is difficult to realize. Consequently, the simultaneous solution by a monolithic scheme is in general computationally

challenging, mathematically and economically suboptimal, and software-wise unmanageable (Farhat and Lesoinne,

1998).

In the non-monolithic approach, existing well-established numerical solvers can be used. The interaction

between the fluid and structural codes is limited to the exchange of surface loads and surface deformation

information using partitioned or staggered procedures (Farhat and Lesoinne, 1998). This approach allows an

easier extension to multidisciplinary problems as they appear, for example, in aerothermoelasticity or aeroservoelas-

ticity.

Usually the solution of dynamic aeroelastic problems needs a coupling in space and time, whereas in static problems

only coupling in space is necessary. For coupling in time, partitioned or staggered solution procedures (Farhat and

Lesoinne, 1998) are widely used. For coupling in space recently, both purely mathematically and physically motivated

approaches (Cebral and Löhner, 1997; Harder and Desmarais, 1972; Hounjet and Meijer, 1994; Maman and Farhat,

1995) were presented.

Because both the aerodynamic and structural models are discretized in a physically different manner, they do not

match at the boundary. This means that the models do not share the same grid points at their common boundary.

Consequently, the structural discretization is not useful to model the aerodynamic shape since there are, in general, not

enough elements or nodes to represent a sufficiently smooth surface. Of course, for the structural problem this is indeed

not necessary. However, since the structural model is often smaller than the aerodynamic model by orders of

magnitude, this can cause problems in defining a genuine deformation field. The remedy to this problem is either to

employ structural models of a higher resolution, resulting in a longer computing time, or to employ more sophisticated

reconstruction processes for the deformation field, incorporating also additional information such as the given rotations

at the grid nodes.

Since loose coupling processes have been widely studied, we will concentrate on describing a new form of transferring

deformations from the structural to the aerodynamic side.

Our new method aims in particular at the situation, where the structural model is much smaller than the

aerodynamical model, which is often the case when beam- or bar-like structural models are employed. In such a

situation, the structural model often consists of far less than a hundred structural nodes. However, for such models

often not only deformations are given at the structural nodes but also rotations. Nonetheless, carrying the deformation

over to the aerodynamic mesh means in such a situation that one has to deal not only with an interpolation but actually

with an extrapolation scheme.

It is our goal, in contrast to previously derived interpolation methods, to incorporate also the recovery of rotations

into the reconstruction process to produce a more accurate solution.

The reconstruction of rotations or torsions is well known in beam-spline structural models, which we will shortly

review in the next section. Then, we will introduce the concept of generalized interpolation in Section 3 and describe our

new coupling method in Section 4. In the final section, as an example, we apply our new method as well as a standard

interpolation method by radial basis function interpolation to the AMP test wing (Hönlinger et al., 1991; Zingel et al.,

1991) and an analytic deformation.
2. Classical beam-splines

In the univariate setting, the recovery of rotations is solved by employing beam splines. The idea behind beam splines

can be described as follows.

Suppose we are given N univariate data sites x1; . . . ; xN . At these data sites we have function values f j ¼ f ðxjÞ as well

as derivative information f 0j ¼ f 0ðxjÞ coming from an unknown function f 2 C1ðRÞ. The goal now is to recover not only

the function values but also the derivative information. This can be done by the general approach

sðxÞ ¼
XN

j¼1

ajfðx� xjÞ þ
XN

j¼1

bjf
0
ðx� xjÞ þ a0 þ a1x, (1)

and the coefficients are determined by the 2N interpolation conditions

sðxjÞ ¼ f ðxjÞ; s0ðxjÞ ¼ f 0ðxjÞ; 1pjpN,
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and the additional constraints

XN

j¼1

aj ¼ 0;
XN

j¼1

ðajxj þ bjÞ ¼ 0.

In classical beam-spline theory, f is given by the cubic function fðrÞ ¼ jrj3, which gives the fundamental solution to the

bi-Laplacian operator.
3. Generalized interpolation

To recover function values f j at data sites xj 2 Rd , the classical interpolation scheme using radial basis functions

starts with a conditionally positive definite kernel F : Rd � Rd ! R.

Definition 3.1. A continuous function F : Rd � Rd ! R is called a conditionally positive definite kernel of order m if

for any N 2 N0, any distinct points x1; . . . ; xN 2 Rd , and any coefficient vector a 2 RNnf0g, satisfying

XN

j¼1

ajpðxjÞ ¼ 0

for all d-variate polynomials of degree m� 1, the quadratic form

XN

j;k¼1

ajakFðxj ; xkÞ

is positive.

Then, one sets up an interpolant of the form

sðxÞ ¼
XN

j¼1

ajFðx; xjÞ þ pðxÞ,

where p 2 pm�1ðR
d Þ is a d-variate polynomial of degree m� 1, where m corresponds to the order of the kernel. To cope

with the additional degrees of freedom, the interpolation conditions sðxiÞ ¼ f j , are enriched by the additional conditions

XN

j¼1

ajpkðxjÞ ¼ 0; 1pkpQ,

where p1; . . . ; pQ is a basis of the space of all d-variate polynomials of degree at most m� 1. It is well known, that this

interpolation problem has, under very mild conditions on the location of the data sites, a unique solution (Wendland,

2005).

However, from the last section and our goal to recover rotations, we can conclude that we have to extend the concept

of classical interpolation in two ways. First of all, we want to allow more generalized functionals than point evaluation

functionals. Second, for the reconstruction of rotations, the three components of the displacement field cannot be

modeled independently any longer. Hence, we have to introduce vector-valued interpolants.

We start by defining the generalized interpolation problem. Suppose we are given N linearly independent functionals

l1; . . . ; lN : CkðRd Þ ! R and we want to recover values f j ¼ ljðf Þ stemming from an unknown function f 2 CkðOÞ.
Then, in accordance to Eq. (1) and by denoting the set of functionals by L, i.e. by setting L ¼ fl1; . . . ; lNg, we form

the interpolant as

sf ;LðxÞ ¼
XN

j¼1

lyj Fðx; yÞ þ
XQ

k¼1

bkpkðxÞ, (2)

where the superscript y indicates that lj is acting on F with respect to its second variable. The interpolation conditions

now become

f i ¼
! liðsf ;LÞ ¼

XN

j¼1

lxi l
y
j Fðx; yÞ þ

XQ

k¼1

bkliðpkÞ; 1pipN. (3)
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Again, they are completed by orthogonality conditions, which now become

XN

j¼1

ajljðpkÞ ¼
!
0; 1pkpQ. (4)

It is well known, that this set-up has a unique solution provided that the functionals are unisolvent (see Wendland,

2005).

Theorem 3.2. Suppose F is a conditionally positive definite kernel of order m. Suppose further, the functionals l1; . . . ; lN

are linearly independent and pm�1ðR
d Þ-unisolvent, which means that the only polynomial p 2 pm�1ðR

d Þ with ljðpÞ ¼ 0 for all

j is given by p ¼ 0. Then, there exists exactly one function (2), which satisfies both sets of conditions (3) and (4).
4. Recovery of rotations

For small angles, rotations can be recovered from derivatives of translations via

yx

yy

yz

0
B@

1
CA ¼ 1

2

0 �
q
qz

q
qy

q
qz

0 �
q
qx

�
q
qy

q
qx

0

0
BBBBBBB@

1
CCCCCCCA

g1

g2

g3

0
B@

1
CA¼: 1

2
r � g.

Hence, suppose for the N data sites x1; . . . ; xN 2 R3, we are given translations

gðxiÞ ¼ ðg1ðxiÞ; g2ðxiÞ; g3ðxiÞÞ
T
2 R3; 1pipN,

and rotations

hðxiÞ ¼ ðy1ðxiÞ; y2ðxiÞ; y3ðxiÞÞ
T
2 R3; 1pipN.

Then, we are looking for an interpolant s : R3 ! R3 satisfying

sðxiÞ ¼ gðxiÞ; 1pipN,

ðr � sÞðxiÞ ¼ 2hðxiÞ; 1pipN.

To put this into the framework of generalized interpolation, we first have to define the action of a vector-functional

k ¼ ðl1; l2; l3Þ onto a vector-valued function. We simply set

kðsÞ:¼l1ðs1Þ þ l2ðs2Þ þ l3ðs3Þ, (5)

[see Narcowich and Ward (1994)].

In our situation, this means that we have to define two sets of functionals, point evaluations and rotations. As usual,

let us denote point evaluation of a function at a point x by dx. Then, the functionals for point evaluations are simply

given by

k3j�2:¼

dxj

0

0

0
B@

1
CA; k3j�1:¼

0

dxj

0

0
B@

1
CA; k3j :¼

0

0

dxj

0
B@

1
CA, (6)

for 1pjpN.

Because of definition (5), these functionals indeed satisfy the required conditions. For example, we have

l3j�2ðsÞ ¼ s1ðxjÞ þ 0þ 0 ¼ s1ðxjÞ.

Next, we define the functionals for the rotations for 1pjpN by

k3ðNþjÞ�2 ¼

0

�dxj
�
q
qz

dxj
�
q
qy

0
BBBB@

1
CCCCA; k3ðNþjÞ�1 ¼

dxj
�
q
qz

0

�dxj
�
q
qx

0
BBBB@

1
CCCCA; k3ðNþjÞ ¼

�dxj
�
q
qy

dxj
�
q
qx

0

0
BBBB@

1
CCCCA. (7)
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Once again, these functionals give the correct representation. For example, we have

k3ðNþjÞ�2ðsÞ ¼ 0�
qs2

qz
ðxjÞ þ

qs3

qy
ðxjÞ,

which corresponds to the first component of ðr � sÞðxjÞ.

Using these functionals, we can set-up a vector-valued interpolant of the form

sðxÞ ¼
X6N

j¼1

ajk
y
j

F1ðx; yÞ 0 0

0 F2ðx; yÞ 0

0 0 F3ðx; yÞ

0
BB@

1
CCAþ qðxÞ

:¼
X6N

j¼1

ajk
y
j Uðx; yÞ þ qðxÞ, ð8Þ

with a vector-valued polynomial q and a matrix-valued kernel F : R3 ! R3�3. In this simplest form the matrix-valued

kernel consists of a diagonal matrix with three (possibly different) basis functions Fiðx; yÞ on its diagonal. Note that,

because of our definition of how a vector-valued functional acts on a vector-valued function, we need to set-up a

matrix-valued kernel to allow the functionals to act on both variables of the kernel.

As a matter of fact, the matrix-valued kernel used in Eq. (8) can be replaced by a more arbitrary positive definite

matrix-valued kernel F : R3 ! R3�3, furthermore, additional requirements can be built into the kernel; see Narcowich

and Ward (1994). However, in our situation, the simple kernel employed in Eq. (8) will suffice.

The action of a vector-valued functional to a matrix is defined by acting on its rows.

In component-wise form Eq. (8) becomes

s1 ¼
XN

j¼1

a3j�2F1ð�; xjÞ þ a3ðNþjÞ�1
q2F1ð�; xjÞ

qz
� a3ðNþjÞ

q2F1ð�; xjÞ

qy

� �
þ q1,

s2 ¼
XN

j¼1

a3j�1F2ð�; xjÞ � a3ðNþjÞ�2
q2F2ð�; xjÞ

qz
þ a3ðNþjÞ

q2F2ð�; xjÞ

qx

� �
þ q2,

s3 ¼
XN

j¼1

a3jF3ð�; xjÞ þ a3ðNþjÞ�2
q2F3ð�; xjÞ

qy
� a3ðNþjÞ�1

q2F3ð�; xjÞ

qx

� �
þ q3,

where the additional index 2 in q2 indicates that the derivative of Fk has to be taken with respect to the second argument.

In general, if no additional information is given, one can simply choose one scalar-valued kernel F1 ¼ F2 ¼ F3¼:j.
If F is conditionally positive definite of order m, the polynomials q1; q2; q3 are chosen from pm�1ðR

3Þ, resulting in

another set of 3Q coefficients.

To determine all 6N þ 3Q coefficients, we have for 1pipN the 6N interpolation conditions

k3i�2ðsÞ ¼ g1ðxiÞ; k3i�1ðsÞ ¼ g2ðxiÞ; k3iðsÞ ¼ g3ðxiÞ,

k3ðNþiÞ�2ðsÞ ¼ 2y1ðxiÞ; k3ðNþiÞ�1ðsÞ ¼ 2y2ðxiÞ; k3ðNþiÞðsÞ ¼ 2y3ðxiÞ, ð9Þ

and the 3Q orthogonality conditions

X6N

j¼1

ajkjðpÞ ¼ 0; p ¼ piek; 1pipQ; 1pkp3, (10)

where ek is the kth unit vector in R3.
5. More details on the interpolation matrix

As is the case with all interpolation processes, we can write our particular interpolation problem as a linear system of

the form

AF;X PX

PT
X 0

 !
a

b

 !
¼

r

0

� �
. (11)
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Here, the block matrices and vectors have the following dimensions: AF;X 2 R6N�6N , PX 2 R6N�3Q, a 2 R6N , b 2 R3Q,

r 2 R6N , 0 2 R3Q�3Q, and 0 2 R3Q.

It is now our goal to describe the entries of the matrices in more detail. To this end, let us set

q ¼
XQ

j¼1

½b3j�2p3j�2 þ b3j�1p3j�1 þ b3jp3j �

with

p3j�2 ¼

pj

0

0

0
B@

1
CA; p3j�1 ¼

0

pj

0

0
B@

1
CA; p3j ¼

0

0

pj

0
B@

1
CA.

We compute the matrix entries Aij ¼ lxi l
y
j Fðx; yÞ of A ¼ AF;X according to the previously introduced indices, using

also the notation

Fðx; yÞ ¼

F1ðx; yÞ 0 0

0 F2ðx; yÞ 0

0 0 F3ðx; yÞ

0
B@

1
CA.

Using the previous way of indices, straightforward computations show that the matrix entries of A fall into different

blocks, which we summarize now as

A3i�2;3j�2 ¼ F1ðxi; xjÞ; A3i�2;3ðNþjÞ�2 ¼ 0,

A3i�2;3j�1 ¼ 0; A3i�2;3ðNþjÞ�1 ¼
q2
qz

F1ðxi; xjÞ,

A3i�2;3j ¼ 0; A3i�2;3ðNþjÞ ¼ �
q2
qy

F1ðxi; xjÞ,

A3i�1;3j�2 ¼ 0; A3i�1;3ðNþjÞ�2 ¼ �
q2
qz

F2ðxi; xjÞ,

A3i�1;3j�1 ¼ F2ðxi; xjÞ; A3i�1;3ðNþjÞ�1 ¼ 0,

A3i�1;3j ¼ 0; A3i�1;3ðNþjÞ ¼
q2
qx

F2ðxi; xjÞ,

A3i;3j�2 ¼ 0; A3i;3ðNþjÞ�2 ¼
q2
qy

F3ðxi; xjÞ,

A3i;3j�1 ¼ 0; A3i;3ðNþjÞ�1 ¼ �
q2
qx

F3ðxi; xjÞ,

A3i;3j ¼ F3ðxi;xjÞ; A3i;3ðNþjÞ ¼ 0,

A3ðNþiÞ�2;3j�2 ¼ 0; A3ðNþiÞ�2;3ðNþjÞ�2 ¼
q1
qz

q2
qz

F2ðxi; xjÞ þ
q1
qy

q2
qy

F3ðxi; xjÞ,

A3ðNþiÞ�2;3j�1 ¼ �
q1
qz

F2ðxi; xjÞ; A3ðNþiÞ�2;3ðNþjÞ�1 ¼ �
q1
qy

q2
qx

F3ðxi; xjÞ,

A3ðNþiÞ�2;3j ¼
q1
qy

F3ðxi; xjÞ; A3ðNþiÞ�2;3ðNþjÞ ¼ �
q1
qz

q2
qx

F2ðxi; xjÞ,

A3ðNþiÞ�1;3j�2 ¼
q1
qz

F1ðxi; xjÞ; A3ðNþiÞ�1;3ðNþjÞ�2 ¼ �
q1
qx

q2
qy

F3ðxi; xjÞ,

A3ðNþiÞ�1;3j�1 ¼ 0; A3ðNþiÞ�1;3ðNþjÞ�1 ¼
q1
qz

q2
qz

F1ðxi; xjÞ þ
q1
qx

q2
qx

F3ðxi; xjÞ,

A3ðNþiÞ�1;3j ¼ �
q1
qx

F3ðxi; xjÞ; A3ðNþiÞ�1;3ðNþjÞ ¼ �
q1
qz

q2
qy

F1ðxi; xjÞ,

A3ðNþiÞ;3j�2 ¼ �
q1
qy

F1ðxi; xjÞ; A3ðNþiÞ;3ðNþjÞ�2 ¼ �
q1
qx

q2
qy

F2ðxi; xjÞ,
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A3ðNþiÞ;3j�1 ¼
q1
qx

F2ðxi; xjÞ; A3ðNþiÞ;3ðNþjÞ�1 ¼ �
q1
qy

q2
qz

F1ðxi; xjÞ,

A3ðNþiÞ;3j ¼ 0; A3ðNþiÞ;3ðNþjÞ ¼
q1
qy

q2
qy

F1ðxi; xjÞ þ
q1
qx

q2
qx

F2ðxi; xjÞ.

Note that we have the following symmetries:

Fkðx; yÞ ¼ Fkðy; xÞ;
q1
qu

Fkðx; yÞ ¼
q2
qu

Fkðy; xÞ;
q1
qu

q2
qv

Fkðx; yÞ ¼
q1
qv

q2
qu

Fkðx; yÞ,

and so on. Here, to avoid writing down too many equations, we have denoted the derivatives with respect to the generic

variables u and v, which can be replaced by any of the coordinates x, y, and z. Moreover, if F1ðx; yÞ ¼
F2ðx; yÞ ¼ F3ðx; yÞ ¼ jðx� yÞ, which is the case for all radial basis functions, only the following information on j and

its derivatives are necessary:

jðxi � xjÞ,

q
qx

jðxi � xjÞ;
q
qy

jðxi � xjÞ;
q
qz

jðxi � xjÞ,

q2

qx2
jðxi � xjÞ;

q2

qy2
jðxi � xjÞ;

q2

qz2
jðxi � xjÞ,

q2

qx qy
jðxi � xjÞ;

q2

qx qz
jðxi � xjÞ;

q2

qy qz
jðxi � xjÞ,

i.e. all derivatives up to order two. In particular, setting up this interpolation problem works only if basis functions are

employed that are at least C2ðR3Þ.

For the matrix P ¼ PX we derive similarly

P3i�2;3j�2 ¼ pjðxiÞ; P3i�2;3j�1 ¼ 0; P3i�2;3j ¼ 0,

P3i�1;3j�2 ¼ 0; P3i�1;3j�1 ¼ pjðxiÞ; P3i�1;3j ¼ 0,

P3i;3j�2 ¼ 0; P3i;3j�1 ¼ 0; P3i;3j ¼ pjðxiÞ,

and

P3ðNþiÞ�2;3j�2 ¼ 0; P3ðNþiÞ�2;3j�1 ¼ �
q
qz

pjðxiÞ; P3ðNþiÞ�2;3j ¼
q
qy

pjðxiÞ,

P3ðNþiÞ�1;3j�2 ¼
q
qz

pjðxiÞ; P3ðNþiÞ�1;3j�1 ¼ 0; P3ðNþiÞ�1;3j ¼ �
q
qx

pjðxiÞ,

P3ðNþiÞ;3j�2 ¼ �
q
qy

pjðxiÞ; P3ðNþiÞ;3j�1 ¼
q
qx

pjðxiÞ; P3ðNþiÞ;3j ¼ 0.

This defines the interpolation matrix. The right-hand side r 2 R6N of system (11) is given by

r3i�2 ¼ g1ðxiÞ; r3i�1 ¼ g2ðxiÞ; r3i ¼ g3ðxiÞ,

r3ðNþiÞ�2 ¼ 2y1ðxiÞ; r3ðNþiÞ�1 ¼ 2y2ðxiÞ; r3ðNþiÞ ¼ 2y3ðxiÞ.

Some remarks are necessary.

First of all, since the dimension of the problem grows now by 6N rather than by N, recovery of rotations is expensive

and should only be used with small models.

For small models, however, one cannot expect an interpolated displacement field to behave perfectly in extrapolating

points. This is inherent to the little information that is given and is almost independent of the chosen reconstruction.

Hence, in particular for small models it is crucial to incorporate as much information into the reconstruction process as

possible, which means that the additional recovery of rotations can yield a better reconstruction.

Though we have restricted ourselves to evaluating the interpolant at the fluid points, it is also possible to derive an

approximation to the rotation at the fluid (or arbitrary) points by taking the curl of the interpolant, i.e. by forming

r � s ¼
X6N

j¼1

ajr1 � k
y
j Fð�; yÞ þ r � q.
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This, can for example be used to verify that the interpolant indeed interpolates also the rotations at the structural

points.
6. An example

We apply the new interpolation scheme to transfer displacements from the structural to the aerodynamic model of

the AMP (Aeroelastic Model Program) test wing (Hönlinger et al., 1991; Zingel et al., 1991).

The structural model of the AMP test wing consists of a single, slightly curved beam with 25 nodes and 24 line

elements. In contrast, the aerodynamical model consists of a highly resolved surface of 54 653 nodes and 109 216

triangles. The coordinate system is as follows. The x-axis is along the root chord, the y axis is normal to the root chord,

pointing roughly in the same direction as the wing, and the z axis is perpendicular to the wing.

To have a feeling for the dimensions, the bounding boxes of both grids are roughly given by:
(i)
 CFD mesh: ½0; 0:75� � ½0; 1:06� � ½�0:05; 0:02�,

(ii)
 FEM mesh: ½0:16; 0:70� � ½0; 1:05� � ½�0:02; 0:01�
Fig. 1 shows the aerodynamic mesh both as a surface and as the unstructured triangle grid. Fig. 2 shows the beam-

like structural grid and its position within the aerodynamic grid.

From this given configuration it is obvious that we not only have to deal with a very small structural model, but also

have to face the problem of extrapolation, i.e. evaluating the interpolant quite far away from the given information. The

beam being almost two-dimensional adds further difficulties.

Nonetheless, it is the purpose of this section to show that, for such a reduced structural model, employing rotational

information improves the reconstruction of the deformation field significantly.

For testing purposes, we applied the following simple, analytic displacements to the structural grid:

gðxÞ ¼ 0; 0; 0:1y2 þ 0:1x
� �T

, (12)

which induces the rotations

2hðxÞ ¼ r � gðxÞ ¼ ð0:2y;�0:1; 0ÞT. (13)

In Fig. 3, the analytical result of this deformation when applied to the CFD mesh is presented. For reasons of

comparison, the figure contains both the undeformed and the deformed CFD surface. Obviously, the maximum

deflection is at the wing tip and it is of size 0.186021.
Fig. 1. The aerodynamic grid.
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Fig. 2. The structural grid. The right part of the figure shows both meshes relative to each other.

Fig. 3. The results of the analytical deformation applied to the CFD surface.
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Naturally, such a simple deflection as the one given in Eq. (12) can also exactly be recovered by other, simpler

reconstruction processes. Furthermore, classical interpolation by radial basis functions and our new approach recover

this deformation exactly as soon as quadratic polynomials are added to the interpolant. However, our goal is not to use

any information on the displacement field, since it will, in general, not be at hand in real-world applications. We have

chosen this simple deformation field since it induces a simple non-constant rotation and hence allows us to study the

error of our method analytically, without being too far away from a realistic deformation field.

We have applied the classical interpolation scheme based upon radial basis functions to the displacement field

generated by Eq. (12) as well as our new generalized interpolation scheme incorporating also the rotations given by

Eq. (13). To ensure the exact reconstruction of rigid body motions, we also included linear polynomials in both cases.

In both cases, we used the same radial basis function, the Gaussian jðxÞ ¼ expð�kxk22=d
2
Þ with a ‘‘support’’

radius d ¼ 2:1, which is roughly twice the length of the wing. Though the choice of the radius has an influence on the

error, several tests executed with different radii showed that the new method is always significantly superior to the

classical interpolation method. Moreover, to avoid ill-conditioning, we stabilized the interpolation matrices by adding

� ¼ 10�10 to the diagonal of the non-polynomial part of the matrix. This is a well-known method for stabilizing ill-

conditioned radial basis function matrices by smoothing; see Wahba (1990) and Wendland and Rieger (2005). The

theoretical background for this in the case of our new interpolation method is still under investigation. However, it

works numerically very well and there exists already some theoretical backup in the case of other generalized

interpolation matrices (Wendland, 2007).

Fig. 4 shows the errors for both methods on the CFD mesh, i.e. the differences between the analytic deformation and

the one computed. Clearly, in both cases the error is largest close to the root of the wing and at the leading and trailing
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Fig. 4. Results for the AMP test wing with (left) and without (right) the reconstruction of rotations.

Table 1

Errors for deformation and rotation on the CFD surface

Method e-Type dx dy dz dr

curl fval 1:788694� 10�4 9:264122� 10�5 4:888944� 10�4 5:287669� 10�4

curl curl 2:958215� 10�3 1:085164� 10�3 7:723361� 10�4 3:244244� 10�3

std fval 0 0 1:802852� 10�3 1:802852� 10�3

std curl 2:047974� 10�1 7:286678� 10�2 0 2:173742� 10�1
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edge, where structural and aerodynamic meshes differ most. But it is also apparent that the new method is much more

capable of recovering the caused rotational deformations at the leading and trailing edge of the aerodynamic model.

Next, Table 1 contains the maximum errors. Here, the first column indicates the employed methods and the second

column refers to the type of errors which are listed in the following columns. To be more precise fval stands for

measuring the error of the deformations, while curl means measuring the error of the rotations of the deformation field;

both are measured on the CFD mesh. The columns denoted by dx, dy, dz give the maximum error on the CFD mesh in

direction x, y, z. Finally, dr gives the Euclidean norm of this error.

Note that the important quantities are dz for fval and dx and dy for curl, since we only have a deformation or

rotational part in these components. This is also the reason why the standard method has zero error in all other

components, since the constant zero is exactly reproduced. However, since the new method models all directions

dependently, this is no longer the case here. But note that the error is always dominated by the previously mentioned

main quantities.

Clearly, the classical method has problems close to the leading and trailing edge of the wing. On the other hand, the

new method produces much better and more reliable results. Nonetheless, when evaluating interpolants in extrapolation

regions, special care is always necessary, since the coarse spatial resolution of the structural grid allows, at least

theoretically, only to hope for a limited accuracy.

What remains is to demonstrate the superiority of the new method in a complete aeroelastic computation. This,

however, will be the subject of further research.
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Cebral, J.R., Löhner, R., 1997. Conservative load projection and tracking for fluid-structure problems. AIAA Journal 35, 687–692.

Edward, J.W., 1993. Computational aeroelasticity. In: Flight-Vehicles, Materials, Structures and Dynamics—Assessment and Future

Directions, vol. 5. ASME, New York.

Farhat, C., Lesoinne, M., 1998. Higher-order staggered and subiteration free algorithms for coupled dynamic aeroelasticity problems.

In: 36th Aerospace Sciences Meeting and Exhibit, AIAA 98-0516, Reno/NV.

Farhat, C., Degand, C., Koobus, B., Lesoinne, M., 1998. An improved method of spring analogy for dynamic unstructured fluid

meshes. In: AIAA 98-2070, 39th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference. Long

Beach, California.

Försching, H., 1974. Grundlagen der Aeroelastik. Springer, Heidelberg.
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